Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Life Sci ; 329: 121990, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37524159

RESUMO

AIM: Parkinson's Disease (PD) is a common age-related neurodegenerative disorder with a rising prevalence. Human pluripotent stem cells have emerged as the most promising source of cells for midbrain dopaminergic (mDA) neuron replacement in PD. This study aimed to generate transplantable mDA progenitors for treatment of PD. MATERIALS AND METHODS: Here, we optimized and fine-tuned a differentiation protocol using a combination of small molecules and growth factors to induce mDA progenitors to comply with good manufacturing practice (GMP) guidelines based on our clinical-grade human embryonic stem cell (hESC) line. KEY FINDINGS: The resulting mDA progenitors demonstrated robust differentiation and functional properties in vitro. Moreover, cryopreserved mDA progenitors were transplanted into 6-hydroxydopamine-lesioned rats, leading to functional recovery. SIGNIFICANCE: We demonstrate that our optimized protocol using a clinical hESC line is suitable for generating clinical-grade mDA progenitors and provides the ground work for future translational applications.


Assuntos
Células-Tronco Embrionárias Humanas , Doença de Parkinson , Células-Tronco Pluripotentes , Humanos , Ratos , Animais , Doença de Parkinson/terapia , Doença de Parkinson/metabolismo , Neurônios Dopaminérgicos/fisiologia , Diferenciação Celular , Dopamina/metabolismo , Mesencéfalo/metabolismo
2.
Glia ; 71(10): 2437-2455, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37417428

RESUMO

Diverse subpopulations of astrocytes tile different brain regions to accommodate local requirements of neurons and associated neuronal circuits. Nevertheless, molecular mechanisms governing astrocyte diversity remain mostly unknown. We explored the role of a zinc finger transcription factor Yin Yang 1 (YY1) that is expressed in astrocytes. We found that specific deletion of YY1 from astrocytes causes severe motor deficits in mice, induces Bergmann gliosis, and results in simultaneous loss of GFAP expression in velate and fibrous cerebellar astrocytes. Single cell RNA-seq analysis showed that YY1 exerts specific effects on gene expression in subpopulations of cerebellar astrocytes. We found that although YY1 is dispensable for the initial stages of astrocyte development, it regulates subtype-specific gene expression during astrocyte maturation. Moreover, YY1 is continuously needed to maintain mature astrocytes in the adult cerebellum. Our findings suggest that YY1 plays critical roles regulating cerebellar astrocyte maturation during development and maintaining a mature phenotype of astrocytes in the adult cerebellum.


Assuntos
Astrócitos , Yin-Yang , Animais , Camundongos , Astrócitos/metabolismo , Cerebelo/metabolismo , Neurônios/metabolismo , Fatores de Transcrição/metabolismo
3.
Cell J ; 25(5): 327-337, 2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37300294

RESUMO

OBJECTIVE: Traumatic optic neuropathy (TON) causes partial or complete blindness because death of irreplaceable retinal ganglion cells (RGCs). Neuroprotective functions of erythropoietin (EPO) in the nervous system have been considered by many studies investigating effectiveness of this cytokine in various retinal disease models. It has been found that changes in retinal neurons under conditions of glial cells are effective in vision loss, therefore, the present study hypothesized that EPO neuroprotective effect could be mediated through glial cells in TON model. MATERIALS AND METHODS: In this experiment study, 72 rats were assessed in the following groups: intact and optic nerve crush which received either the 4000 IU EPO or saline. Visual evoked potential and optomotor response and RGC number were assessed and regenerated axons evaluated by anterograde test. Cytokines gene expression changes were compared by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Density of astrocytes cells, assessed by fluorescence intensity, in addition, possible cytotoxic effect of EPO was measured on mouse astrocyte culture in vitro. RESULTS: in vitro data showed that EPO was not toxic for mouse astrocytes. Intravenous injection of EPO improved vision, in terms of visual behavioral tests. RGCs protection was more than two times in EPO, compared to the vehicle group. More regenerated axons were determined by anterograde tracing in the EPO group compared to the vehicle. Moreover, GFAP immunostaining showed while the intensity of reactive astrocytes was increased in injured retina, systemic EPO decreased it. In the treatment group, expression of GFAP was down-regulated, while CNTF was upregulated as assessed by qRT-PCR in the 60th day post-crush. CONCLUSION: Our study showed that systemic administration of EPO can protect degenerating RGCs. Indeed, exogenous EPO exerted neuroprotective and neurotrophic functions by reducing reactive astrocytic gliosis. Therefore, reduction of gliosis by EPO may be considered as therapeutic targets for TON.

4.
Andrologia ; 52(5): e13546, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32189393

RESUMO

Telomeres, noncoding and repetitive DNA sequences play a significant function in chromatin integrity. Telomere length is age-dependent in somatic cells, while it increases in sperm cell with age. Therefore, we aimed to assess sperm chromatin, leucocyte and sperm telomere length (LTL, STL) in spermatozoon of 38 infertile and 19 fertile men aged between 20 and 50 years. Protamine deficiency (chromomycin A3 test), DNA fragmentation (TUNEL assay), lipid peroxidation (Bodipy probe) and telomere length (quantitative real-time PCR) were assessed. A significant decrease in mean of sperm concentration and motility and a significant increase in means of sperm abnormal morphology, DNA fragmentation, lipid peroxidation and protamine deficiency were observed in infertile compared with fertile men. In addition, the mean of LTL and STL were significantly shorter in infertile men compared with fertile individuals. We observed significant associations between telomere length with sperm concentration, DNA fragmentation and lipid peroxidation. We hypothesised that increased oxidative stress in spermatozoa of infertile men can result in abnormal packaging of chromatin, damage of DNA and shorter sperm telomere length. Together, these anomalies may account for fertility failure in these individuals.


Assuntos
Cromatina/metabolismo , Infertilidade Masculina/genética , Espermatozoides/metabolismo , Telômero/metabolismo , Adulto , Estudos de Casos e Controles , Fragmentação do DNA , Humanos , Infertilidade Masculina/patologia , Peroxidação de Lipídeos/genética , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo/genética , Protaminas/análise , Protaminas/metabolismo , Contagem de Espermatozoides , Motilidade dos Espermatozoides , Homeostase do Telômero , Adulto Jovem
5.
Mol Biol Rep ; 47(3): 1783-1794, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31989426

RESUMO

Astrocytes play the key roles in the physiology and pathology of the CNS. Thereupon, in this manuscript, we aim to demonstrate that the protocol for purification and culture of astrocytes is useful not only in 2 days postnatal but also in adult rat brain. Also, the mentioned protocol is a simple and efficient primary cell culture technique. The whole-brain was isolated from the skull and the meninges were removed carefully. Afterward, the cerebral hemispheres were mechanically and enzymatically digested. Then, the cell suspension was seeded in T25 culture flask and was incubated at 37 °C in the CO2 incubator. The first shaking was performed after 7-8 days and on day 14, second shaking was done. After 2-3 passage, the culture was analyzed. By passaging, the majority of extracted cells were astrocytes presenting with a polygonal to fusiform and flat morphology that expressed GFAP, GLAST, and S100ß. The expression of neural, neuronal and oligodendrocyte markers was not detected in extracted cells. The patch-clamp recording comfirmed the purity of isolated astrocytes as well. The isolated cells from adult rat brain were astrocytes that expressed specific astrocyte markers after 3 and 10 passages. This method is suggested to obtain a population of astrocytes that may provide a beneficial tool for different neurophysiological and pathophysiological studies.


Assuntos
Astrócitos/citologia , Encéfalo/crescimento & desenvolvimento , Separação Celular/métodos , Cultura Primária de Células/métodos , Animais , Animais Recém-Nascidos , Astrócitos/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Células Cultivadas , Transportador 1 de Aminoácido Excitatório/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Técnicas de Patch-Clamp , Ratos , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo
6.
Int J Biol Macromol ; 148: 1118-1129, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31982534

RESUMO

spinal cord injury (SCI) is a traumatic damage that can causes a loss of neurons around the lesion site and resulting in locomotor and sensory deficits. Currently, there is widely attempts in improvement of treatment strategy and cell delivering to the central nervous system (CNS). The usage of hyaluronic acid (HA), the main components of the ECM in CNS tissue and neural stem cells (NSCs) niche, is a good selection that can increase of viability and differentiation of NSCs. Importantly, we demonstrate that encapsulation of human embryonic stem cell derived-neural stem cells (hESC-NS) in HA-based hydrogel can increased differentiation these cells into oligodendrocytes and improved locomotor function.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias Humanas/citologia , Ácido Hialurônico , Células-Tronco Neurais/citologia , Regeneração , Transplante de Células-Tronco , Animais , Sobrevivência Celular , Células Cultivadas , Gerenciamento Clínico , Imunofluorescência , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Hidrogéis , Masculino , Células-Tronco Neurais/metabolismo , Ratos , Traumatismos da Medula Espinal/terapia , Alicerces Teciduais
7.
Stem Cells Dev ; 29(5): 266-280, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31847709

RESUMO

Over the past few decades, our knowledge about the function of the central nervous system (CNS) and astrocytes has improved, and research has confirmed the key roles that astrocytes play in the physiology and pathology of the CNS. Here, we reviewed the intrinsic and extrinsic mechanisms that regulate the development of astrocytes, which are generated from radial glial cells. These regulatory systems modulate various signaling pathways and transcription factors. In this review, four stages of astrocyte development-specification (patterning and switch), migration, proliferation, and maturation, are discussed. In astrocyte patterning, VA1-VA3 domains create the astrocyte subtypes by differential expression of Slit1 and Reelin in the spinal cord. In the brain, patterning creates several astrocyte subtypes by different organizing centers. At the switch step, the janus kinase-signal transducer and activator of transcription pathway governs the transition of neurogenesis to gliogenesis. Bone marrow protein and Notch pathways are also important players of the progliogenic switch. Intrinsic regulation is mediated by DNA methylation transferases, and polycomb group complexes can intrinsically affect the development of astrocytes. In the next stage, these cells proliferate and migrate to their final location. Astrocyte maturation is accomplished through the development of cellular processes, molecular markers, and functions.


Assuntos
Astrócitos/fisiologia , Sistema Nervoso Central/fisiologia , Animais , Proliferação de Células/fisiologia , Células Ependimogliais/fisiologia , Humanos , Neurogênese/fisiologia , Proteína Reelina , Transdução de Sinais/fisiologia
8.
Stem Cell Res Ther ; 10(1): 380, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31842989

RESUMO

BACKGROUND: Spinal cord injury (SCI) results in glial scar formation and irreversible neuronal loss, which finally leads to functional impairments and long-term disability. Our previous studies have demonstrated that the ectopic expression of Zfp521 reprograms fibroblasts and astrocytes into induced neural stem cells (iNSCs). However, it remains unclear whether treatment with Zfp521 also affects endogenous astrocytes, thus promoting further functional recovery following SCI. METHODS: Rat astrocytes were transdifferentiated into neural stem cells in vitro by ZFP521 or Sox2. Then, ZFP521 was applied to the spinal cord injury site of a rat. Transduction, real-time PCR, immunohistofluorescence, and function assessments were performed at 6 weeks post-transduction to evaluate improvement and in vivo lineage reprogramming of astrocytes. RESULTS: Here, we show that Zfp521 is more efficient in reprogramming cultured astrocytes compared with Sox2. In the injured spinal cord of an adult rat, resident astrocytes can be reprogrammed into neurons through a progenitor stage by Zfp521. Importantly, this treatment improves the functional abilities of the rats as evaluated by the Basso, Beattie, and Bresnahan (BBB) locomotor rating scale and further by calculation of its subscores. There was enhanced locomotor activity in the hind limbs, step length, toe spread, foot length, and paw area. In addition, motor evoked potential recordings demonstrated the functional integrity of the spinal cord. CONCLUSIONS: These results have indicated that the generation of iNSCs or neurons from endogenous astrocytes by in situ reprogramming might be a potential strategy for SCI repair.


Assuntos
Astrócitos/metabolismo , Regulação da Expressão Gênica/genética , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Traumatismos da Medula Espinal/genética , Fatores de Transcrição/genética , Dedos de Zinco/genética , Animais , Modelos Animais de Doenças , Masculino , Ratos , Ratos Sprague-Dawley
9.
J Cell Physiol ; 234(10): 18697-18706, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30912162

RESUMO

Generating neural stem cells (NSCs) from astroglia as an abundant cell type in the mammalian brain has a promising outlook to be used in cell-replacement therapy for treatment of neurodegenerative disorders and neuronal trauma. However, little is known about a single reprogramming factor that may lead to the generation of induced NSCs (iNSCs) from adult brain-derived astrocytes in the absence of extrinsic inductive signals. Here, we show that zinc-finger nuclear protein Zfp521 alone is sufficient for converting the adult mouse brain-derived astrocytes into iNSCs. In vitro, Zfp521-iNSCs demonstrated long-term self-renewal and multipotency and expressed related markers. Moreover, single-seeded iNSCs were able to produce NSC colonies. These results suggest that application of Zfp521 to generate iNSCs could be regarded as a new approach for conversion of resident astrocytes into iNSCs in cell therapy for in vivo treatment of neural injuries.


Assuntos
Envelhecimento/metabolismo , Astrócitos/citologia , Astrócitos/metabolismo , Diferenciação Celular , Reprogramação Celular , Células-Tronco Neurais/citologia , Fatores de Transcrição/metabolismo , Animais , Células Clonais , Camundongos , Células-Tronco Neurais/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA